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States and Homomorphisms on the Ptak Sum
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Summing of a Boolean algebra and a quantum logic has been defined by P. Ptak
and studied by, e.g., V. Jani§, Z. RieCanova, O. Nénasiova, and C. A. Drossos.
It was shown that there is a special case when this structure is a direct product.
Drossos has studied the connection between this structure and a Boolean power.
In this paper we investigate the conditions when the Ptk sum is a free product
and when the connection is between the center of L and the structure of states
on B® L.

1. INTRODUCTION

Let L be a quantum logic. In this paper we consider the quantum logic
as an orthomodular lattice. Precisely, L is a partially ordered set with the
first and the last elements 0 and I, respectively, with the orthocomplemen-
tation L: L — L such that

(1) (at)* =a for aeL.

(2) a £ b implies a* = b+, where a, bel.

(3) For all aeL we have at va=1.

(4) For any a,, ..., a,cL there exists \/?:1 a;eL.
(5) fa<bh thenb=av (b ra) (a,bel).

Two elements a, beL are orthogonal if a < b+, and a, be L are compat-
ible (a<sbyif a=(avb)r(avbt) fgel forany i=1,2,3,4,...,n
and bel is such that b«»a, for all i, then b« \/7_,a, and
b A(\7-ia)=\/?_:(a A b) (Varadarajan, 1968).

A subset L, < L is a sublogic of L if for any ae L, we have a*eL, and
for any ay, ..., a,eLy, \/7-a;eL,. If for any a,beL,a b, then L is a
Boolean algebra. In the following we shall pick up C(L), the center of L
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[C(L) ={aeL; a<« b for any beL (Varadarajan, 1968; Ptak and Pulman-
nova, 1989).

A state m on L is the map from L to the interval [0, 1] on the real line
such that (i) m(l) =1; (i) m(\/7=,a,) =7 m(a,) if a;<a* for all
a;#a;(i,j=1,2,...,n).If Lis a quantum logic, then S(L) will be the set
of all states on L. For S < S(L) we shall say that (L, S) is a quite full
system (qfs) if {meS:m(a) =1} < {meS:m(b) =1} implies a < b (Ptak
and Pulmannova, 1989).

Let L,, L, be some logics. Then a mapping f: L, > L, is called a
homomorphism if

(1) flah) =f@™
(2) fla vb)y=f(a) v f(b) for a,b from L, such that a < b*.

The set R(f) = {f(a); aeL,} is called the range of homomorphism f. Two
homomorphisms h: L, — L., g: L,— L, are called compatible if for any
aeL, and for any beL,, h(a) < g(b) (where L,, L,, L, are quantum logics).

If a mapping f: L, — L, is injective homomorphism and /! is homo-
morphism, then fis called an embedding (Ptak and Pulmannova, 1989).

Let L, Q be some quantum logics. Let m and % be a state on L and a
homomorphism from Q to L, respectively. It is clear that a map m, from
Q to L such that m,(a) = m(h(a)) is a state on Q.

Definition 1.1 (Pulmannova, 1988). Let (L,, 0, 1,, %), il, be a set of
ortholattices. An ortholattice (%, 0, 1, *) is a free product of the ortholat-
tices L;, iel, if:

(i) For any iel, there is an injective homomorphism u;: L, > %
preserves the lattice operations and orthocomplementation so that each L,
can be considered as a subalgebra of %, and for i,jel, i #j, L, — {0, I;}
are disjoint.

(i) & is generated by (), {u,(L;): iel}.

(iii) For any ortholattice 4 and for a family of homomorphisms
¢,: L;— A4, iel, there exists a homomorphism ¢: ¥ — A4 such that ¢ ou,
agrees with ¢, for all iel.

Definition 1.2 (Ptak, 1986). Let B and L, be a Boolean algebra, and a
quantum logic, respectively. Then B @ L, is quantum logic with the follow-
ing properties:

(1) There exist embeddings f: b — L, f;: L, — L such that f(a) A f,(b)
=0iffa=0o0rb=0.

(2) There is no proper sublogic L containing f(B) U f,(L,).

(3) For each couple of states m,eS(B), m;eS(L,) there exists a state
pueS(B@®L,) such that u( f(@) =my(a) for each aeB and
u( f1(b)) =my(b) for any beL, [u = (mgy, my)].
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This structure is known as the Ptk sum. In the following we will
mention only the main properties of this structure. For any ae B @ L, there
exists an orthogonal partition / from B {¢,,...,¢,} and q,,...,a,€L,
such that a=\/7_,f(c;)) Afi(a;). We can write g as the “vector”

a= [(Cla al)a Sees (C,,, an)] and f(C) = [(C, ])9 (C_La 0)],]}(0) = [(I’ a)]

2. HOMOMORPHISMS AND STATES

Proposition 2.1. Let L, A be a quantum logic, B be a Boolean algebra,
and B @ L be the Ptak sum. Then a map y: B&® L — A is a homomorphism
iff there exist two homomorphisms #, g such that #: B—> A4,g: L — A, and
h(a) <> g(b), for any aeB and any beL where h =7y of, g =7 o f].

Proof. Let vy be a homomorphism. It is clear that yof, yof; are
homomorphisms as well and, moreover, yof: B—A, yofi:L—>A. Let
aeB and beL. We have

(1, D)) =[(a. b), (a*, )] = (f(@) Af;(B)) v (fl@a™) A fi(B))

Then

WL DT =9 S A[iO) =7y o f(D) Ay ofi(b) =7 = fi(b)
but

(@, b), (a*t, Bl = y( f(@) Afi(B) v flat) A f1(B))

=yofl@ nyefilb) vyeoflat) nyefi(b)
If we put
yef=h —and  yofi=g

then we get

g(b) = (h(a) A g(b)) v (h(a™) A g(b))

This means that g(b) «» h(a) holds for every aeB and bel.

Now we show the opposite implication. Let A: B—> A4, g: L > A4 be
such homomorphisms that g(b) <> A(a) for any beL and any acB. We
show that a map t from B@ L — A4 defined as

T([(al’ bl) LI ] (an’ bn)]) = \/ h(ai) A g(bz)

is the homomorphism.
Obviously =([(1, D) = I and =([({, 0)]) = 0. Without loss of generality
it is enough to show the property of the supremum for the following
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elements: b =[(a, b)), (a*, b)), c =[(a, ¢;), (a*, &), b; < ¢, i=1, 2.
e v B =1((a, b v ), (a*t, by v e)l
=h(a) A glb, v c;) v ha) Aglb,vcy)
=h(a) A (g(by) v glc)) v (ha™) A (g(by) v g(c2))
= h(a) A g(by) v h(a) A gle)) v ia*) A g(bs) v h(a*) A g(e)
= h(a) A g(b\) v h(a*) A g(by) v h(a) A g(e,) v h(a) A glc,)
=1(b) v 1(¢0)

From the known properties of a quantum logic it is clear that r = s+
iff r vs=1and r <s*. Let [(a}, b)), ..., (a,, b,)€B® L. From the defin-
ition of the map t we have

w({(ar, b,%), - -, (@, 5, ) =\ h(a;) A g(b)
and
{(ay, by), - .., (@, b)) = \/ ha;) A g(b;)

Evidently
(\/ (h(a;) A g(b,-))> v (\/ (h(a;) A g(bﬁ))> =1

Let us put r=\/,(ha,) A gb;")), s=\/; (Ma;) A g(b;)). Then s*=
/\; (h(a)* v g(b;*)). Now we have for any i,je{l,...,n}, ha)A
g(b;*) < h(a;) v (b,"), and h(a,) A g(b;") < h(a;)* for any i #j. From this
we can conclude that

\/ ha;) A g(b,*) < /\ (h(aj)L Vv g(bjl))

J

This means

\/ (ha)) A glb) < (\/ (h(a,) g(b,-)))
and then
T([(al’ bll)a s (an’ an_)D = T([(als bl)a cet (an’ bn)])l

Thus we conclude that the map 7 is the homomorphism from B@® L to
A. 1
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Proposition 2.2. The Ptik sum B@® L is a free product iff L is a
Boolean algebra.

Proof. Let B, L be some Boolean algebras and B @ L be the Ptak sum.
If we put B L =% and u, =f, u, =f; it is clear that the conditions (i),
(ii) of the free product are fulfilled. Let 4 be any Boolean algebra. Let
maps ¢;: B— A4, ¢,: L > A be homomorphisms. Hence R(¢,), R(¢,) are
subsets of A, ¢, <> ¢,. From Proposition 2.1 there exists a homomorphism
¢: ¥ —A such that ¢, =¢ cu,, ¢, = ¢ cu,. From this it is clear that
B @ L is the free product.

Let B@® L be a free product and 4 be any orthomodular lattice. Let
g: L - A be any homomorphism. Let a, b€ R(g) such that ¢ is not compat-
ible to b. Let us put H = {a, a*, 0, I}. And let 4 be a homomorphism from
B on H such that there exists an element z with A(z) = a. It is clear that
such a homomorphism exists and moreover A(z) is not compatible to
beR(g). From Proposition 2.1 it follows that there does not exist a
homomorphism y from B@® L to 4. This means that B @ L is not the free
product so that A4 is the Boolean algebra. From the definition of the free
product we have that A is any orthomodular lattice; then we can put
A = L. Now we can conclude that L is the Boolean algebra. H

Let L be a quantum logic. Let us denote S(L) as the set of all states
on L. Let B be a Boolean algebra. If M, = S(B) and M, < S(L), then
M, x M, < S(B® L) such that any peM, x M, iff there exist m,eM,,
myeM, with u = (m,, m,).

Proposition 2.3. Let B and L be a Boolean algebra and a quantum
logic, respectively, and M, € S(B), M, < S(L). Then (B@® L,, M, x M,) is
gfs iff both (B, M,), (L,, M,) are gfs.

Proof. Let (B@®L, M, x M,) be qfs. Let us denote B={deB®L:
d=|(c, D, (ct, 0)] for ceB}. Tt is clear that B is a Boolean subalgebra
B @ L which is isomorphic to B and the restriction M, x M, on B is
isomorphic to M,. From this we have (B, M) is gfs. Analogously,
L={keB®L:k=[(1k)],keL} is a sublogic of B@® L and it is isomor-
phic to L. Moreover, the restriction M, x M, on L is isomorphic to M.
Then (L, S,) is qfs.

Let (B, M)), (L, M,) be both qgfs. Let {peM, x M,: wa) =1} <
{ueM, x M,: u(b) = 1}. We know there exist ¢, ..., ¢c,€B an orthogonal
decomposition I in B, and a,,...,a,,b,,...,b,eL, such that

a= [(Cls 111), LR (C’n, an)]’ b = [(Cl’ bl)s MR (Cna bn)]
If w(a) =1, then there is exactly one ie{l,...,n} such that u(a) =

Y. my(c,)my(a;) = my(c;ym,(a;) = 1. From the assumption we have that
j=1
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u(a) = 1 implies p(b) = 1. Then m,(b;) = 1. This means that a, < b,. More-
over, (B, M) is qfs, too, and from that for any ceB, ¢ # 0 there exists a
state myeM, with my(c) = 1. Hence o, <b, for all i=1,...,n (where
¢;#0). 1

It is clear that S(B) x S(L) < S(B @ L). The following example shows
that these sets do not have to be equal.

Example. Let B=1{0,1,a,a*}, C(L)=1{0,1,b,b*} (L is a quantum
logic). Let & be an isomorphism from B to C(L) such that A(a) = b. Let
meS(L) such that m(b) #0,1 and p=(m,, m), aeS(B@® L) such that
a(ay, b)), ..., (@ b1 =) my(h(a;) Ab;). It is clear that off(B)=
ulf(B), alfi(L) =ulfi(L), but a«#u It is sufficient to take ¢ =
[(a, h(a™), (a=, O)].

Proposition 2.4. Let B@ L be a Ptak sum and % be a map from B to
L. A map y: B®L — L which is defined as y((¢,a,), ..., (c,, a,)]) =
\/7=1 h(¢;) A a; is a homomorphism iff /4 is the homomorphism from B
to C(L).

Proof. From the Proposition 2.1 we know that y is a homomorphism
iff the maps y o f, y o f; are homomorphisms and moreover y o f 7y o f;.
But y o f] is the identical isomorphism from the assumption; then it is clear
that & =y o f'is the homomorphism whose range is the subset of C(L). M

Proposition 2.5. Let L be a quantum logic such that C(L) # {0, 1} and
B be a Boolean algebra. Let meS(L) and 4 be a homomorphism from B to
C(L) such that there exist ceB with m(h(c)) # 1, 0. Then there exist two
states o, ueS(B@L) such that a#pu but offj(L) =pu/fi(L), x/f(B) =
u(f(B).

Proof. From the previous proposition we know that there exists a
homomorphism y:B@®L —-L such that y{((c,,a,),...,(c,, a,)])=
Vi k) A a;forany [(c, a)), . .., (¢, a,)] from B@ L. If meS(L), then m,
is a state on B@® L and

n

my([(cln al)’ ceey (cn’ an)]) = 2 m(h(ct) A ai)
On the other hand, m, is a state on B and from the definition of the Ptak
sum there exists a state u on B @ L such that

n

wller @), . - -, (e a)l) = 3 m(h(c;)ym(a;)

i=1
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Now it is enough to calculate
w(l(e, h(c)), (c*, O)) = m(h(c))m(h(c ™)) # 0
and
m,({(c, h(c ), (c*, O = m,(h(c) A h(c ™)) =0
On the other hand, we have
w((1, @))) = m, (1, D))
w(l(e, D, (e, O) =m,({(c, D, (c*, 0. W

Proposition 2.6. Let B and L be a Boolean algebra and a quantum
logic, respectively, and let (L, M) be gfs. Here M is a convex set of states.

(i) If there exists a homomorphism s from B to L such that
R(h) # {0, 1}, then there exist states u, o from S(B @ L) such that

plf(B) =a/f(B),  plfi(L)=affi{(L), butyu#«

(if) C(L) = {0, 1} iff for any homomorphism / from B to C(L) and for
any state m from M the relation

mn n

Y. mh(eym(a;) = . m(h(c;) A a;)

i=1 i=1
is satisfied, where [(¢;, @), ..., (¢, a,)]€eB® L.

Proof. (i) Let C(L) ={0, 1}; then for any homomorphism 4 from B
to C(L) we have R(h) = {0, I} and it is clear that for any state m on L we
have

n H

Y. m(h(c,)m(a;) = ZI m(h(c;) A a;)

i=1 i=
Let

n n

21 m(h(c;))m(a;) = Z m(h{c;) ~ a;)

i= i=1
for any state m from M and for any homomorphism from C(L). Then for
any be B we have
m(h(b) A h(b*)) = m(h(b))m(h(b™)) =0

This means that m(h(b)) =1 or 0.
Hence M is gfs, and for the convex set of states, we have h(b)e{0, 1}
for any h. Then C(L) = {0, 1}.
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