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States and Homomorphisms on the Ptfik Sum 
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Summing of a Boolean algebra and a quantum logic has been defined by P. Ptfik 
and studied by, e.g., V. Jani~, Z. Rieeanov/t, O. N~nfisiovfi, and C. A. Drossos. 
It was shown that there is a special case when this structure is a direct product. 
Drossos has studied the connection between this structure and a Boolean power. 
In this paper we investigate the conditions when the Ptfik sum is a free product 
and when the connection is between the center of L and the structure of states 
on B@L. 

1. I N T R O D U C T I O N  

Let L be a quantum logic. In  this paper  we consider  the q u a n t u m  logic 
as an orthomodular lattice. Precisely, L is a part ial ly ordered set with the 

first and  the last elements 0 and 1, respectively, with the or thocomplemen-  
ta t ion L: L- -+L such that 

( l )  (aa)  • = a for aeL.  
(2) a -< b implies a • -> b • where a, bEL. 
(3) For  all a e L  we have a I v a = 1. 

(4) Fo r  any a l , . . . ,  aneL there exists V T = l a i e L .  
(5) I f a < b ,  t h e n b = a v ( b A a  • (a, beL) .  

Two elements a, b e L  are orthogonal if a < b L, and  a, b e L  are compat- 
ible (a+-~b) i f a = ( a  v b )  A(a  v b •  I f a i E L  for any i = 1 , 2 , 3 , 4 , . . . , n  
and b eL  is such that  b+-,as for all i, then b+-~VT=lai and  

b A (VT= 1 a,) = VT-  i (ai A b) (Varadara jan ,  1968). 
A subset L0 _c L is a sublogic of  L if for any aeLo we have a• and 

for any a l , . . . ,  a~eLo, VT= l aieLo . If  for any a, beL ,  a+-+b, then L is a 
Boolean algebra. In  the following we shall pick up C(L), the center of L 
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[C(L) = {aeL;  a ~--*b for any beL (Varadarajan, 1968; Pt/tk and Pulman- 
nov/t, 1989). 

A state m on L is the map from L to the interval [0, 1] on the real line 
such that (i) m(l)= 1; (ii) m(VT= la~)= ~.= l m(ai) if ai < aj ~ for all 
a; ~a a1 (i, j = 1, 2 . . . . .  n). If L is a quantum logic, then S(L) will be the set 
of all states on L. For S c_ S(L) we shall say that (L, S) is a quite full 
system (qfs) if {rueS: m(a) = 1} ___ {mES: m(b) = 1} implies a < b (Ptfik 
and Pulmannov/t, 1989). 

Let L~, L 2 be some logics. Then a mapping f :  L~---~L 2 is called a 
homomorphism if 

(1) f(a • = f ( a )  • 
(2) f(a v b) =f (a )  v f (b )  for a, b from L 1 such that a < b • 

The set R(f )  = {f(a); a ~LI } is called the range of homomorphism f.  Two 
homomorphisms h: L~---~L3, g: L2---~L 3 are called compatible if for any 
a ~L1 and for any b eL2, h(a) +-~ g(b) (where Ll,  L2, L3 are quantum logics). 

If a mapping f :  L1 ~ L2 is injective homomorphism and f -  ~ is homo- 
morphism, then f is called an embedding (Pt/tk and Pulmannovh, 1989). 

Let L, Q be some quantum logics. Let m and h be a state on L and a 
homomorphism from Q to L, respectively. It is clear that a map mh from 
Q to L such that mh(a) = m(h(a)) is a state on Q. 

Definition 1.1 (Pulmannov~t, 1988). Let (L~, 0~, I,., • i~L be a set of 
ortholattices. An ortholattice (s 0, I, • is a free product of the ortholat- 
rices Li, i~L if: 

(i) For any ieL there is an injective homomorphism ue:L1--+Sf 
preserves the lattice operations and orthocomplementation so that each L~ 
can be considered as a subalgebra of 5~, and for i, j e L i  ~j,  Li - {0~, li} 
are disjoint. 

(ii) s is generated by Ui {ui(L~): ieI}. 
(iii) For any ortholattice A and for a family of homomorphisms 

c~: L ~ A ,  i~L there exists a homomorphism ~b: s ~ A  such that q5 o u; 
agrees with qS, for all i~I. 

Definition 1.2 (Pt/tk, 1986). Let B and L1 be a Boolean algebra, and a 
quantum logic, respectively. Then B �9 L~ is quantum logic with the follow- 
ing properties: 

(1) There exist embeddings f :  b ~ L, fl : L1 ~ L such that f(a) Afl (b) 
= 0 i f f a = 0  or b = 0 .  

(2) There is no proper sublogic L containing f (B)uf~(L1) .  
(3) For each couple of states mo~S(B), m~S(L1) there exists a state 

#ES(BOL1) such that l~(f(a))=mo(a) for each a~B and 
/~( fl  (b)) = m 1 (b) for any b eLl [# = (m0, m~)]. 
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This structure is known as the Ptdk sum. In the following we will 
mention only the main properties of  this structure. For  any a eB  @ L1 there 
exists an orthogonal partition 1 from B {cl . . . . .  cn} and al . . . . .  aneL1 
such that g = V T = t f ( c i ) A f l ( a i ) .  We can write a as the "vector"  
_a = [(c,, a , ) , . . . ,  (G, an)] and f (c)  = [(c, 1), (c • O)],fl(a) = [(1, a)]. 

2. H O M O M O R P H I S M S  A N D  S T A T E S  

Proposition 2.1. Let L, A be a quantum logic, B be a Boolean algebra, 
and B �9 L be the Ptfik sum. Then a map y: B G L --* A is a homomorphism 
iff there exist two homomorphisms h, g such that h: B--*A,g: L ~ A ,  and 
h(a) +--,g(b), for any a~B and any b e L  where h = 7  of, g = y  ofl .  

Proof. Let y be a homomorphism. It is clear that 7 of, 7 ~ are 
homomorphisms as well and, moreover, 7 of: B--*A, 7 of1:L--*A. Let 
a s B  and beL.  We have 

[(1, b)] = [(a, b), (a • b)] = ( f ( a )  AN(b)) v (fla • ^f~(b)) 

Then 

but 

If we put 

then we get 

7[(1, b)] = 7[ f (1)  AA(b)] = y of(I)  A 7 ~ = y ~ 

y[(a, b), (a z, b)] = y ( f ( a )  A f l  (b) v f (a  • A f l  (b)) 

=y of(a) A y ~ v 7 o f ( a ' )  A Y ~ 

y o f =  h and 7 ~ = g  

g(b) = (h(a)/x g(b)) v (h(a • /x g(b)) 

This means that g(b) ~ h(a) holds for every a e B  and b~L.  
Now we show the opposite implication. Let h : B - * A ,  g : L ~ A  be 

such homomorphisms that g(b)*--,h(a) for any b ~ L  and any aeB.  We 
show that a map z from B 0 L ~ A defined as 

"c([(a,, hi)  . . . . .  (an, bn)]) = V h(ai) A g(bi) 
i 

is the homomorphism. 
Obviously r([(l, 1)]) = 1 and if[U, 0)]) = 0. Without loss of generality 

it is enough to show the property of the supremum for the following 
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e lements :  b = [(a, b l ) ,  (a 1, b2)], c = [(a, c l ) ,  (a • c j ] ,  bi < ci • i = 1, 2. 

"C(C V b )  = "~([(a, b 1 v c 1 )  , ( a  •  6 2 v c 2 )  ] 

= h(a) A g(bl v cl) v h(a ~) A g(bz v c2) 

= h(a) A ( g ( b l )  v g(q) )  v (h(a • /x (g(b2) v g(c2)) 

= h(a) A g(bl) v h(a) A g(Cl) V h(a • /x g(b2) v h(a l )  /(g(c2) 

= h(a) A g ( b l )  v h(a • A g(b2) v h(a) A g ( q )  V h(a) A g(c2) 

: ~(b) v ~(c) 

F r o m  the  k n o w n  p r o p e r t i e s  o f  a q u a n t u m  log ic  i t  is c l ea r  t h a t  r = s-L 
iff r v s = I a n d  r <- s • Le t  [(a~, b l ) , .  �9 �9 ( a , ,  b , ) ]  ~ B  O L .  F r o m  the def in-  
i t ion  o f  the  m a p  z we have  

z( [ (a l ,  bl l )  . . . . .  ( a , ,  bn• : V h(a,)/x g(bF-) 
i 

a n d  

E v i d e n t l y  

z( [ (a l ,  h i ) ,  . �9 �9 , (an, b j ] )  = V h(ag) A g(bi) 
i 

Le t  us p u t  r = V i  (h(ai) A g(bi• s = V j  (h(as) /x g(bj)). T h e n  s •  
A j ( h ( a : )  a v g(bj•  N o w  we have  for  a n y  i , j~{1 . . . . .  n}, h(a i )  A 
g(b~ • <- h(a~) v (bia) ,  a n d  h(as) A g(bs • < h(a/) • for  a n y  i # j .  F r o m  this  
we can  c o n c l u d e  t h a t  

Th i s  m e a n s  

a n d  t hen  

V h(ai) A g(b,• A (h(a:) v g(bji))  
i j 

(v V (h(ai) A g(bi• <- (h(ai) A g(bi)) 
i 

l " ( [ ( a l ,  b l •  . . . , ( a  n ,  b n •  = - c ( [ ( a l ,  h i ) ,  �9 . . , ( a n ,  b n ) ] )  • 

T h u s  we c o n c l u d e  t h a t  the  m a p  z is the  h o m o m o r p h i s m  f r o m  B |  to  
A. [ ]  
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Proposition 2.2. The Pt/tk sum B • L is a free product iff L is a 
Boolean algebra. 

Proof. Let B, L be some Boolean algebras and B | L be the Pt~ik sum. 
If we put B �9 L --- 50 and ul = f ,  u2 = f l  it is clear that the conditions (i), 
(ii) of the free product are fulfilled. Let A be any Boolean algebra. Let 
maps ~bl: B ~ A ,  ~b2: L --*A be homomorphisms. Hence R(qS1), R(~b2) are 
subsets of A, ~bI ~ (/)2. From Proposition 2.1 there exists a homomorphism 
~b:5 ~  such that ~b~=~boul, ~b2=qSou2. From this it is clear that 
B �9 L is the free product. 

Let B | L be a free product and A be any orthomodular lattice. Let 
g: L --+A be any homomorphism. Let a, b~R(g) such that a is not compat- 
ible to b. Let us put H = {a, a • 0, 1}. And let h be a homomorphism from 
B on H such that there exists an element z with h(z) = a. It is clear that 
such a homomorphism exists and moreover h(z) is not compatible to 
b~R(g). From Proposition 2.l it follows that there does not exist a 
homomorphism 7 from B �9 L to A. This means that B G L is not the free 
product so that A is the Boolean algebra. From the definition of the free 
product we have that A is any orthomodular lattice; then we can put 
A = L. Now we can conclude that L is the Boolean algebra. [] 

Let L be a quantum logic. Let us denote S(L) as the set of all states 
on L. Let B be a Boolean algebra. If  Mt c_ S(B) and m 2 _~ S(L), then 
M I x  M2~_S(B| such that any /teM~ x M2 iff there exist m~eM~, 
m2eM2 with /2 = (ml, m2). 

Proposition 2.3. Let B and L be a Boolean algebra and a quantum 
logic, respectively, and M~ ~_ S(B), M 2 ~ S (L) .  Then (B O Ll,  M I x  3//2) is 
qfs iff both (B, M~), (L,, M2) are qfs. 

Proof. Let (B|  M1 x M2) be qfs. Let us denote _B = {d_~BGL" 
d = [(c, 1), (c • 0)] for ceB}. It is clear that _B is a Boolean subalgebra 
B |  which is isomorphic to B and the restriction M l x  M 2 on  _B is 
isomorphic to M1. From this we have (B, Mx) is qfs. Analogously, 
L = {_k~B O L :  _k = [(1, k)], k~L} is a sublogic of B O L  and it is isomor- 
phic to L. Moreover, the restriction M~ x M2 on _L is isomorphic to M~. 
Then (L, S~) is qfs. 

Let (B, Ml),  (L, M2) be both qfs. Let {~teM1 x M2: #(a) = 1} _ 
{#eM~ x 3/2: #(b) = 1}. We know there exist c~ . . . . .  cnEB an orthogonal 
decomposition 1 in B, and a~ . . . . .  an, b~ . . . . .  bn eLl  such that 

a = [(el, a l )  . . . . .  (on, a~)], h = [(el, b ~ ) , . . . ,  (on, b,)]  

If  /2(a)= 1, then there is exactly one i t { l , . . . , n }  such that #(_a)-- 
n 

mo(cj)ml(aj) =mo(ci)ml(ai)= 1. From the assumption we have that 
. j =  1 
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#(a) = 1 implies if(b) = 1. Then m~ (b~) = 1. This means that a i < be. More- 
over, (B, Ms) is qfs, too, and from that for any csB,  c v~ 0 there exists a 
state mo~M s with mo(c ) = 1 .  Hence ae<-be for all i = l  . . . . .  n (where 
c~ r 0). �9 

It is clear that S(B) x S(L) c S(B | L). The following example shows 
that these sets do not have to be equal. 

Example. Let B = {0, 1, a, a• C(L) = {0, 1, b, b • (L is a quantum 
logic). Let h be an isomorphism from B to C(L) such that h(a) = b. Let 
m ~S(L) such that m(b)r  0, 1 and t~ = (mh, m), e eS(B |  such that 
~[(al,bs) . . . . .  (an, b , )]=~me(h(ae)Abi) .  It is clear that c~/f(B)= 
ff/f(B), e/fs(L)=l~/f~(L), but c~r  It is sufficient to take e =  
[(a, h(aZ), (a • 0)1. 

Proposition 2.4. Let B | L be a Pt/tk sum and h be a map  from B to 
L. A map y ' B  O L ~ L  which is defined as y([(cs, as) . . . . .  (cn, an)])= 
VT= s h(ce)/x a~ is a homomorphism iff h is the homomorphism from B 
to C(L). 

Proof. From the Proposition 2.1 we know that y is a homomorphism 
iff the maps 7 of, 7 ~ are homomorphisms and moreover y ~ ~ 
But 7 ~ is the identical isomorphism from the assumption; then it is clear 
that h = 7 o f  is the homomorphism whose range is the subset of  C(L). �9 

Proposition 2.5. Let L be a quantum logic such that C(L) ~ {0, I} and 
B be a Boolean algebra. Let m~S(L) and h be a homomorphism from B to 
C(L) such that there exist c EB with m(h(c)) ~ 1, 0. Then there exist two 
states c~, # e S ( B |  such that e C p but cCfs(L)= #/fs(L), e l f (B)=  
#If(B). 

Proof. From the previous proposition we know that there exists a 
homomorphism 7: B G L - - , L  such that 7([(cl, al)  . . . . .  (c,, an)I) = 
Vih(ci) /x  ai for any [(cs, a s ) , . . .  , (cn, an)] from B OL.  I fm~S(L) ,  then m~ 
is a state on B O L  and 

m7([(cl, al) . . . . .  (cn, an)]) = ~ m(h(ci) /x ai) 
i ~ l  

On the other hand, mh is a state on B and from the definition of the Ptfik 
sum there exists a state/~ on B �9 L such that 

kt([(cl, a i ) , . . . ,  (cn, a,)]) = ~ m(h(ci))m(ai) 
i = l  



States and Homomorphisms on the Ptfik Sum 

Now it is enough to calculate 

#([(c, h(c l)), (c =, 0)]) = m(h(c))m(h(c • ~ 0 

and 

1963 

Let 

m(h(ci))m(ai) = ~ m(h(G) A ai) 
i = l  i = l  

for any state m from M and for any homomorph i sm from C(L). Then for 
any b e B we have 

m(h(b) A h(b ~ )) = m(h(b))m(h(b • = 0 

This means that m(h(b)) = 1 or 0. 
Hence M is qfs, and for the convex set of  states, we have h(b) e {0, 1} 

for any h. Then C(L) = {0, 1}. 

m~([(c, h(ci ) ) ,  (c • 0)]) = m~(h(c) A h (c i ) )  = 0 

On the other  hand, we have 

~([(1, a) ] )  = m s ( [ (1 ,  a) ] )  

#([(c, 1), (c • 0)]) = m~ ([(c, 1), (c • 0)]). �9 

Proposition 2.6. Let B and L be a Boolean algebra and a quantum 
logic, respectively, and let (L, M)  be qfs. Here M is a convex set of  states. 

(i) If  there exists a homomorph i sm h from B to L such that  
R(h) -r {0, 1}~ then there exist states/~, ~ from S ( B |  such that  

#If(B) = ~/f(B), #/f~ (L) = ~/f~ (L), but  p =~ 

(ii) C(L) = {0, I} iff for any homomorph i sm h f rom B to C(L) and for 
any state m from M the relation 

is satisfied, where [(cl, al) . . . . .  (c,, a,,)] e B  �9 L. 

Proof (ii) Let  C(L) = {0, 1}; then for any homomorph i sm h f rom B 
to C(L) we have R(h) = {0, 1} and it is clear that  for any state rn on L we 
have 

m(h(ci))m(a,) = ~ m(h(ci)/x ai) 
i ~ l  i = l  
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